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Exact evaluation of the propagator for the damped harmonic 
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Curitiba, Parana, Brazil 

Received 17 January 1984 

Abstract. Using the Caldirola-Kanai Hamiltonian for the quantum dissipative system, we 
are able to express the propagator as the modified Feynman path integral in the configuration 
space, which can then be evaluated for the damped harmonic oscillator by Montroll’s 
method. The propagator of the damped harmonic oscillator can also be calculated beyond 
and at caustics with the help of Horvithy-Feynman formula. Our new results are confirmed 
by investigating the classical paths joining two fixed end-point positions. Finally, we obtain 
the time-dependent wavefunctions from the propagator of our dynamical system. 

1. Introduction 

From Feynman’s approach to non-relativistic quantum mechanics, the propagator can 
be expressed as the path integral in phase space (Feynman 1951). Using the Caldirola- 
Kanai Hamiltonian (Caldirola 1941, Kanai 1948) for the quantum dissipative dynamical 
system, we are able to obtain the propagator as the modified Feynman path integral 
in configuration space after carrying out the integrations over all the momenta in phase 
space. We then evaluate exactly the propagator for the damping harmonic oscillator 
by using Montroll’s method (1952). Furthermore, the propagator for the damped 
harmonic oscillator can also be evaluated beyond and at caustics with the help of 
Horvfithy-Feynman formula ( 1979). We confirm our results by investigating the 
classical paths, satisfying two fixed end-point boundary conditions, in terms of the 
Jacobi fields (DeWitt-Morette 1976, Mizrahi 1979). Finally, we obtain the time- 
dependent wavefunctions of the damped harmonic oscillator, which are in agreement 
with those of Kerner (1958) and Hasse (1979,  as we expect. 

2. Formulation 

As is well known in non-relativistic quantum mechanics, the propagator can be 
expressed as the path integral (Feynman 1951, Tobocman 1956, Garrod 1966, Marinov 
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1980) in phase space 

where H (  p ,  q )  is the Hamiltonian of one-dimensional dynamical system considered 
and Dp Dq is the usual two-dimensional Feynman path differential measure in phase 
space. For later convenience we have set T = t " -  t ' ,  E = ( t " -  t ' ) /  N and rj = r ( t '  + j E ) ,  

r ' =  r ( t ' )  and r"= r ( t" )  for any function r ( t )  of time t .  
In spite of its interpretation difficulties in quantum mechanics (Haves 1957, Hasse 

1975), we use the following Caldiorla-Kanai Hamiltonian (Caldirola 1941, Kanai 1948) 

for the quantum dissipative system. V ( q )  and y are respectively, the potential energy 
and the dissipative coefficient of the dynamical system under consideration. We now 
assume that ( I )  is still valid for the Calidirola-Kanai Hamiltonian ( 2 ) .  Substituting 
( 2 )  into ( I )  and then integrating over all the momenta in phase space, we can easily 
show that 

K [ q " , q ' ;  T I = [  exp(i[" 'L(q,q,  I '  t)dt)D,q 

with the Lagrangian 

D,q is designed to indicate the modified one-dimensional Feynman path differential 
measure by including the dissipative effective in configuration space. Equation (3) has 
already been used by Khandekar et a1 (1979) and by Cheng (1983, 1984), but to our 
knowledge, the derivative of it has not been reported elsewhere. 
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3. Evaluation 

For a damped harmonic oscillator with frequency w,  the Lagrangian has the form 

~ ( q ,  q, t )  = f m ( q 2  - w 2 q 2 )  eyf 

q + yq + w y =  0. 

(6) 

and the Lagrange equation of motion is 

(7) 

With the help of (6), the propagator defined by (3) can be written as 

Now we let sk = qk(m/2hs)’/’ eYrk”, then (8) can be rewritten as 

K[s” ,  s’; 7-1 = Lim (iT)-”’(m eY‘” /2h~)1’2  exp{i[(s”2 + s f 2 ) -  s 2 w 2 s ” ] }  
N-C‘2 

Since dqk = (2h&/m)Ii2 e-y‘k/2 dsk. Following the idea of Montroll(1952), we transform 
the multiple integral in (9) into the Gaussian integral 

N ic 2 

exp[i(sTAs +2bTs)] n dsk = (i.rr)”*(det exp(-ibTA-’b). (10) I_, . . * I_, k = l  

Comparing (9) and (1 0), we find that the matrix A is of the form 

a1 - d  0 0 . . .  0 0 0 
- d  a2 - d  0 . . .  0 0 0 
0 -d  a3 - d  . . .  0 0 0 

0 0 0 0 . . .  - d  -d  0 
0 0 0 0 . . .  0 -d  - d  
0 0 0 0 . . .  0 0 -d  

. . .  . . .  . . .  A =  1 
with ak = 1 +eYf  - W ~ E ’  and d = eYp/’. The column matrix b has the following elements 

and 
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Here we have set c 5 (m/2f1)”~. Substituting (10H12) into (9), we have 

K [ s ” ,  s‘; T]=lim (m eY“’/27rihe det A)”’ exp(iB(s”, s’; E ) )  

B(s” ,  s’; E ) = ( S ’ ” + S ‘ ~ ) -  bTA-’6. (14) 

(13) 
E +O 

with 

We have assumed that the factor exp(--1E2w2s’2) in (9) to be one as E + O .  Now we 
have only to calculate the limit values of ( E  det A )  and B(s” ,  s’, E )  as E + 0. 

From matrix A we define f k  and g k  as the following determinants 

and 

g ,  = E U l ,  -d a ,  

a ,  -d  0 
-1 a ,  -d ’ 

1 0  -d a l l  

. . .  g 3  = E 

, fl = E det A . . .  

, g N - ,  = E det A. 

It is easy to show that f k  and g k  satisfy the finite-difference equations 

( & + I  - 2 f k + f k - l ) / E 2 = - w 2 f k - Y Y ( f k + l  - f k ) / &  (16) 

( g k + l  - 2gk + g k -  I ) /  = - w 2 g k  + r ( g k  - g k -  I ) /  E ,  (17) 

and 

respectively. With the help of the end conditions of fk and g k ,  (16) and (17) can be 
transformed into the following differential equations 

f + y f + w ’ f  =o, f ’ = o ,  f’= - 1  (18) 

g - yg + w 2 g  = 0,  g’ = 0, g” 1 (19) 

and 

in the limit as E + 0. Therefore, we find 

lim ( E  det A) = lim f l  =f’ = g”. (20) e-O E ’ O  

From (1 1) and (15) we discover that fk and g k  are related through the formula 

f k  + I  g k  - d’fk + 2 g 4  - I = f k g k  - I - d ’ f k  + I  g k - 2 .  (21) 
Hence 

g k  = E f d k  + 2 ( f k  + I  f k  +2)-’ + ’ f k  + 2 g k  - I / f k  + I 

= E f  Lh + 2 [ ( f k  + I  fk + 2 ) - ’  + ’ ( f d k  + I)-’] + d‘ fk  + I g k  -2/h 
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With the help of (1 1) and (22), we can show that 

bTA- 'b  = k = l  ( f d k + l d 2 k ) - 1 (  j = k  5' bJJ+,dJ) '  

after lengthy but straightforward calculations. Substituting (23) into (1 3), the propa- 
gator has the form 

exp[i(a,q" + b,q'q" + cEq'")], 

Here we return to the variables q' and q" since we are going to take the limit values 
of a,, b,, and c, as E + 0. As E + 0, we obtain 

lim 6'0 6, = lim E'O ( - m  eY"'/hfl) = -(m eY"'/hf') (26) 

and 

Here we have used (22) for k = N - 2 in deriving the limit value of c,. 
Substituting (20) and (26) into (24), we finally arrive at one of our principal results 

The propagator has been expressed in terms of f ( r )  and g ( t )  which are, respectively, 
the solution of the equation of motion of time-dependent harmonic oscillator with 
damping and with antidamping. Solving (18) and (19) we have 

f ( t )  = {exp[-y(t - t")/2]/fl} sin f l ( t " -  t )  

and 

g ( t )  = {exp[-y(t'- t)/2]/R} sin f l ( t  - r ' ) .  
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With the help of (28), we obtain the propagator for the damped oscillator 

- X ( Q ~ -  2iR ajf2)) 
2 r i h  sin R T 

imR 

Here we have used the relation R 2 =  0 2 -  y2/4 and the transformation Q =  
( m  ey'/2h)'"q. For y = 0, (29a) reduces to the well known propagator of harmonic 
oscillator. In § 6 we are going to use (296) to evaluate the time-dependent wavefunctions 
of the damped harmonic oscillator. 

4. Beyond and at caustics 

For the quadratic Lagrangian, the propagator can be expressed as (Feynman and Hibbs 
1965, Morette 1951) 

K[q", q ' ;  TI = F[ t" ,  t'] exp{iS,,(q", q ' ,  T)/h}, (30) 

where S,,(q", q', T) is the classical action and the pre-exponential path integral given by 

F [ t " ,  I.]=/ e x p [ ( E )  ~ 1 " ~ ~ 2 - 0 2 7 2 ) e y 1 d t ] D ~ 7 ( t )  I '  

for the damped harmonic oscillator, with 7' = 7'' = 0. Using the transformation 6 = 
7 exp(yr/2), (31) becomes 

F [  t", t'] = / exp[ (E) / " (i2 - R2t2)  d t ] Dt(  t )  
I  

since 6' = 5'' = 0. Now the arguments of Horvdhy ( 1  979) are also valid here. Therefore, 
we have 

e Y ' i ' + f " ) / 2  

2hIsin R TI ) I" exp[ --; [ ($ + Ent y)]  I 
imR 

K[q", q ' ;  TI = 

xexp[ ( - ~ ) ( e ~ l , q ~ 2 - e " , , q ~ ~ ~ )  ] exp [ ( X s i n R T )  

(33) I ~ [ ( e ~ ~ ' q ' ~ + e ~ ~ ' ' q ' ' ~ )  cos R T  -2 exp[y(t'+t")/2]q'qf'] 

the propagator for the damped harmonic oscillator beyond caustics. Ent(R T/ r) stands 
for the largest integer which is less than or equal to R T / r .  

At caustics or R T  = n n  ( n  being zero or positive integer), the phase factor of 
F[t" ,  t'], exp(-inrr/2), is a jump in phase at every half period, observed in electron 
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optics (Schulman 1975), in molecular (Miller 1970) and in nuclear (Levit et a1 1974) 
scattering and derived from Morse’s theory (Milnor 1963). The propagator at caustics 
can then be calculated from the following modified semi-group property 

K [ q ” ,  4’; T = n.ir/n] = exp( -in.ir/2)lF(tr’, ;)I IF( < t’)l 

where 4 = q( 7) for any time 7 in between t‘ and t”. Using (30) and (33) and choosing 
I= t ” -  i7/20, we finally obtain the propagator at caustics of damped harmonic oscil- 
lator 

K[q”,  q ’ ;  T =  n.ir/n] = exp(-in.rr/2) exp(y(t‘+ t ” ) / 4 ) ~ ( e y f ” 2 q ‘ - ( - ~ ) f l  erf””q”) (35) 

after lengthy but straightforward calculations. Equation (35) for y = 0 reduces to 
equation (1.3) of Horvithy (1979) as we expect. We are going to discuss our new 
result (35) by investigating the classical paths with the initial and final positions being 
specified in 9 5. 

5. Classical paths 

As is well known that the classical paths of interest for the calculation of the propagator 
are those for which the initial and final positions are specified: q: = q’ and qt  = 9”. 
Following DeWitt-Morette (1976) and Mizrahi (1979), the classical paths can be 
expressed in terms of Jacobi fields or a linear combination of two independent solutions 
of the small-disturbance equation. For the damped harmonic oscillator, they are 

(36) D( t )= (w/n )exp[y ( t ” -  t)/2] sin[n(t”- t )+@],  D” = 1, D” = 0 

and 
- 

(37) D(t) = ( l / n )  exp(y(r”- t)/2] sin n(r”- t ) ,  f i l l  = 0,  D” = - 1. 

Here we have set @=tan- ’ (20 /y ) .  Using (A16) of Mizrahi (1979), we obtain the 
classical paths 

qc( t )={q’exp[-y( t -  t ’ ) /2]s inn(f”-  t )  +q”exp[y(f”-t)/2]sinCl(t-  t’)}(sinRT)-’ 
(38) 

after lengthy but straightforward calculations. Equation (38) reduces to (A20) of 
Mizrahi as it should. From (38) we summarise the various cases in table 1, which is 
only valid for n> 0 or the weak damping case ( w  > y ) .  

At caustics, all classical paths starting from the space-time point (q’ ,  t’) coalesce 
to (q”, t”) if and only if q’exp(yt’/2) = q”exp(yt”/2). Thus for any pair of (q’,  r’) and 
(q”, t”), we have either no classical path or an infinity of classical paths between them. 
Equation (30) breaks down even for the latter case, and is valid if the Hamiltonian 
action has only one ‘critical point’ (Milnor 1963, DeWitt-Morette 1976), i.e., classical 
path. Therefore one has to evaluate the propagator at caustics by other means. Our 
method is by choosing cj in between q’ and q” so that there exists one and only one 
classical path connecting q‘ and cj, and cj and q”. In other words, we use the modified 
semi-group property (34) since firstly (30) is valid for the pair of ( q ’ ,  t ‘ )  and (4 ,  ;), and 
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(q, r) (and (q",  t") and secondly the phase factor of F[t" ,  t ' ] ,  exp(-inr/2), is already 
known. Our results (35) are in agreement with the conditions for existing infinite many 
classical paths at caustics in table 1. 

6. Wavefunctions 

For quadratic Hamiltonian with time-dependent parameters and with friction terms, 
the propagator can be expressed as 

KEQ", 0'; 7-1 = c IL?(Q', t ')ILI(Q", t") ,  (39) 

where the wavefunction GI( Q, t )  defined by Khandekar and Lawande (1975). Instead 
of treating the problem rigorously, we compare (29b) with the well known propagator 
of the harmonic oscillator with frequency a. We can easily show that 

(40) 

since the variables Q and t are already separated in (296). $y(Q, 1) is the well known 
wavefunctions of the harmonic oscillator with frequency 0. In terms of the original 
variable q, equation (40) becomes 

t,bl(q, t )  = NI exp(iE,t/h) exp[-(mR/2h)(l +iy/2Q) e"q2]Hl[(m12/h)"z ey"2q], (41) 

with 

I 

MO, t )  = ILm t )  exp(-iyQ2/2W e x p ( h )  

El = [ ( I  +;)a +$y]h ( l = 0 , 1 , 2 ,  ...) (42) 
where the normalisation constant NI = ( m a /  %-t1)"~(2'Z!)-''~ and H , [ x ]  Hermite poly- 
nomials. (41) and (42) are equivalent to those of Kerner (1958) and of Hasse (1975) 
as we expect. 

7. Conclusions 

In  order to complete our results, we should mention that the propagator (29a) becomes, 
respectively, 

xexp[ ( -2h sinh n'T 1 
I X [(ey"qf2 +ey"'q"2) cosh n'T + 2  exp[y(t '+ t") /2]q'q"]  

with fi = - i l l  =( y2/4-  w2)"' for strong damping or w < y / 2 ,  and 

(43) 
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for critical damping or w = y/2. However, we will not evaluate the time-dependent 
wavefunctions for the above cases (Dodonov and Man’ko 1978). 

Equation (29a) has also been obtained by Khandekar and Lawande (1979) and by 
Jannussis er a1 (1979). The method proposed in this paper has been generalised by 
Cheng ( 1983) for the damped and forced harmonic oscillator with time-dependent 
frequency and by Cheng (1984) for the damped harmonic oscillator with time- 
dependent frequency and perturbative force. However, the propagator, (33) and (35) 
of the damped harmonic oscillator are new. Works of evaluating the propagator at 
caustics for the time-dependent forced harmonic oscillator with constant damping are 
in progress and will be published in the near future. 
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